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Let G be a finite group of order n. Let gcd(m,n) = 1 implies there exists
integers a,b € Z such that am + bn = 1. Let ¢ be the map x —— 2™.
Consider the map & : G — G given by &(x) = z®. Then for any = € G,
(b o f(.’l)) — (b(xa) = %M — 2 gince r = SL’I — xu'm—i—bn — xtmnmbn —
29 (2™)? = 29 where n is the order of G. Similarly, we have {0 ¢ = Idg.
Thus, the m-power map is a bijection on G.

Given H < G, K C G such that K is closed under group operation
and H N K = {e}. We need to show that HK is a subgroup of G iff
K is a subgroup of G. Suppose K < G. We first prove that HK is
closed under group operation. Let hiki, hoko € HK. Then, hikihoks =
hlk‘lhgkjflklk‘g = h1h3k3 € HK where h3 = klhgk‘fl and k3 = klk‘g.
Now, e € HK and finally we show that a = kj hi'hoke € HK. Since
H <G, a€e H. Since K <G, e € K and hence a = a-e € HK. Thus,
HK is a subgroup of G.

Conversely, suppose HK < G. Note that K C HK since if k € K,
k=e-kc HK. But HK is a subgroup implies k! € HK. We assert
that k~! € K. Clearly, k~! ¢ H and if k~! = hk’ for some h € H then,
H N K # {e}. Thus, every element in K has an inverse. As K is closed
under group operation, we conclude that K is a subgroup.

We classify all groups of order 12 whose 3 Sylow subgroups are normal.
Let G be a group of order 12 = 22 - 3. By third Sylow theorem, if ny and
ng respectively denote the number of 2-Sylow and 3-Sylow subgroups of G
then, ny € {1,3} and n3 € {1,4}. Let P, @ respectively denote a 2-Sylow
and a 3-Sylow subgroup of G. We assert that G is a semidirect product
of P and Q. As the orders are relatively prime, we have PN Q = {1}
and |PQ| = |P||Q|/|IPNQ| = 2%-3 =12 = |G|. Thus, G = PQ. Now,
the case when 3-Sylow subgroup is normal is the case ng = 1. This gives
Q<G and G = Q x P. The 2-Sylow subgroup P has order 4 and P = Z4
or Z3. Similarly, Q = Zs. This gives G = Z3 x Z4 or G = 73 x 72 = Dg
depending on whether the 2-Sylow subgroup is cyclic or not. Further,
when G is abelian, we have the possibilities G & Z15 or G = Zo X Zo X Zs3.

To show that if H is a Sylow subgroup of G then, N(N(H)) = N(H).
One way is clear, N(N(H)) 2 N(H). To prove the reverse inclusion let
x € N(N(H)) then, xN(H)x~! = N(H). Further, note that H is the
unique p-Sylow subgroup of N (H) because nHn =1 = H for alln € N(H).
We have rHz~* C 2N (H)z~! = N(H), i.e., zHz ! is a p-Sylow subgroup
of N(H) and hence sHz~! = H.
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¢ is a prime number and p divides ¢ — 1. Let Cj denote the cyclic group
of order q. Then, Aut(C,) is a subgroup of S, with the property that
|Aut(G)| = ¢ — 1. As p | ¢ — 1, by Cauchy’s theorem there exists ¢ €
Aut(Cy) such that o(¢) = p. Let H < Aut(Cy) be the cyclic subgroup
generated by ¢. Then, we have a nontrivial homomorphism from C), to
Aut(Cy) given by n(a) = ¢ for a € Cp. Thus, the semidirect product
G = Cy %y, Cy, is the required non abelian subgroup of order pg in Sy.

N < G and H is a p-Sylow subgroup of G so, NH is a subgroup of
G. Clearly, H is a subgroup of NH as well and we have [NH : H] =
[N : NN H] by the isomorphism NH/H = N/N N H. Further, we have
[G: H] =[G : NH|NH : H|. Consequently, as H is p-Sylow subgroup
p1|G: H]) and hence p{ [NH : H| = [N : NN H]. This proves that NN H
is p-Sylow in N.



