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(1) Let G be a finite group of order n. Let gcd(m,n) = 1 implies there exists
integers a, b ∈ Z such that am + bn = 1. Let φ be the map x 7−→ xm.
Consider the map ξ : G −→ G given by ξ(x) = xa. Then for any x ∈ G,
φ ◦ ξ(x) = φ(xa) = xam = x since x = x1 = xam+bn = xamxbn =
xam(xn)b = xam where n is the order of G. Similarly, we have ξ ◦φ = IdG.
Thus, the m-power map is a bijection on G.

(2) Given H C G, K ⊆ G such that K is closed under group operation
and H ∩ K = {e}. We need to show that HK is a subgroup of G iff
K is a subgroup of G. Suppose K ≤ G. We first prove that HK is
closed under group operation. Let h1k1, h2k2 ∈ HK. Then, h1k1h2k2 =
h1k1h2k

−1
1 k1k2 = h1h3k3 ∈ HK where h3 = k1h2k

−1
1 and k3 = k1k2.

Now, e ∈ HK and finally we show that α = k−1 h
−1
1 h2k2 ∈ HK. Since

H C G, α ∈ H. Since K ≤ G, e ∈ K and hence α = α · e ∈ HK. Thus,
HK is a subgroup of G.

Conversely, suppose HK ≤ G. Note that K ⊂ HK since if k ∈ K,
k = e · k ∈ HK. But HK is a subgroup implies k−1 ∈ HK. We assert
that k−1 ∈ K. Clearly, k−1 /∈ H and if k−1 = hk′ for some h ∈ H then,
H ∩K 6= {e}. Thus, every element in K has an inverse. As K is closed
under group operation, we conclude that K is a subgroup.

(3) We classify all groups of order 12 whose 3 Sylow subgroups are normal.
Let G be a group of order 12 = 22 · 3. By third Sylow theorem, if n2 and
n3 respectively denote the number of 2-Sylow and 3-Sylow subgroups of G
then, n2 ∈ {1, 3} and n3 ∈ {1, 4}. Let P , Q respectively denote a 2-Sylow
and a 3-Sylow subgroup of G. We assert that G is a semidirect product
of P and Q. As the orders are relatively prime, we have P ∩ Q = {1}
and |PQ| = |P ||Q|/|P ∩ Q| = 22 · 3 = 12 = |G|. Thus, G = PQ. Now,
the case when 3-Sylow subgroup is normal is the case n3 = 1. This gives
Q /G and G ∼= Qo P . The 2-Sylow subgroup P has order 4 and P ∼= Z4

or Z2
2. Similarly, Q ∼= Z3. This gives G ∼= Z3 o Z4 or G ∼= Z3 o Z2

2
∼= D6

depending on whether the 2-Sylow subgroup is cyclic or not. Further,
when G is abelian, we have the possibilities G ∼= Z12 or G ∼= Z2×Z2×Z3.

(4) To show that if H is a Sylow subgroup of G then, N(N(H)) = N(H).
One way is clear, N(N(H)) ⊇ N(H). To prove the reverse inclusion let
x ∈ N(N(H)) then, xN(H)x−1 = N(H). Further, note that H is the
unique p-Sylow subgroup of N(H) because nHn−1 = H for all n ∈ N(H).
We have xHx−1 ⊆ xN(H)x−1 = N(H), i.e., xHx−1 is a p-Sylow subgroup
of N(H) and hence xHx−1 = H.
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(5) q is a prime number and p divides q − 1. Let Cq denote the cyclic group
of order q. Then, Aut(Cq) is a subgroup of Sq with the property that
|Aut(G)| = q − 1. As p | q − 1, by Cauchy’s theorem there exists φ ∈
Aut(Cq) such that o(φ) = p. Let H 6 Aut(Cq) be the cyclic subgroup
generated by φ. Then, we have a nontrivial homomorphism from Cp to
Aut(Cq) given by η(a) = φa for a ∈ Cp. Thus, the semidirect product
G = Cq oη Cp is the required non abelian subgroup of order pq in Sq.

(6) N E G and H is a p-Sylow subgroup of G so, NH is a subgroup of
G. Clearly, H is a subgroup of NH as well and we have [NH : H] =
[N : N ∩H] by the isomorphism NH/H ∼= N/N ∩H. Further, we have
[G : H] = [G : NH][NH : H]. Consequently, as H is p-Sylow subgroup
p - [G : H] and hence p - [NH : H] = [N : N ∩H]. This proves that N ∩H
is p-Sylow in N .
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