Solution to 14.pdf

- (1) Let G be a finite group of order n. Let gcd(m, n) = 1 implies there exists integers $a, b \in \mathbb{Z}$ such that am + bn = 1. Let ϕ be the map $x \mapsto x^m$. Consider the map $\xi : G \longrightarrow G$ given by $\xi(x) = x^a$. Then for any $x \in G$, $\phi \circ \xi(x) = \phi(x^a) = x^{am} = x$ since $x = x^1 = x^{am+bn} = x^{am}x^{bn} = x^{am}(x^n)^b = x^{am}$ where n is the order of G. Similarly, we have $\xi \circ \phi = \mathrm{Id}_G$. Thus, the *m*-power map is a bijection on G.
- (2) Given $H \triangleleft G$, $K \subseteq G$ such that K is closed under group operation and $H \cap K = \{e\}$. We need to show that HK is a subgroup of G iff K is a subgroup of G. Suppose $K \leq G$. We first prove that HK is closed under group operation. Let $h_1k_1, h_2k_2 \in HK$. Then, $h_1k_1h_2k_2 =$ $h_1k_1h_2k_1^{-1}k_1k_2 = h_1h_3k_3 \in HK$ where $h_3 = k_1h_2k_1^{-1}$ and $k_3 = k_1k_2$. Now, $e \in HK$ and finally we show that $\alpha = k_1^{-1}h_1^{-1}h_2k_2 \in HK$. Since $H \triangleleft G, \alpha \in H$. Since $K \leq G, e \in K$ and hence $\alpha = \alpha \cdot e \in HK$. Thus, HK is a subgroup of G.

Conversely, suppose $HK \leq G$. Note that $K \subset HK$ since if $k \in K$, $k = e \cdot k \in HK$. But HK is a subgroup implies $k^{-1} \in HK$. We assert that $k^{-1} \in K$. Clearly, $k^{-1} \notin H$ and if $k^{-1} = hk'$ for some $h \in H$ then, $H \cap K \neq \{e\}$. Thus, every element in K has an inverse. As K is closed under group operation, we conclude that K is a subgroup.

- (3) We classify all groups of order 12 whose 3 Sylow subgroups are normal. Let G be a group of order $12 = 2^2 \cdot 3$. By third Sylow theorem, if n_2 and n_3 respectively denote the number of 2-Sylow and 3-Sylow subgroups of G then, $n_2 \in \{1,3\}$ and $n_3 \in \{1,4\}$. Let P, Q respectively denote a 2-Sylow and a 3-Sylow subgroup of G. We assert that G is a semidirect product of P and Q. As the orders are relatively prime, we have $P \cap Q = \{1\}$ and $|PQ| = |P||Q|/|P \cap Q| = 2^2 \cdot 3 = 12 = |G|$. Thus, G = PQ. Now, the case when 3-Sylow subgroup is normal is the case $n_3 = 1$. This gives $Q \triangleleft G$ and $G \cong Q \bowtie P$. The 2-Sylow subgroup P has order 4 and $P \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2 . Similarly, $Q \cong \mathbb{Z}_3$. This gives $G \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_4$ or $G \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_2^2 \cong D_6$ depending on whether the 2-Sylow subgroup is cyclic or not. Further, when G is abelian, we have the possibilities $G \cong \mathbb{Z}_{12}$ or $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.
- (4) To show that if H is a Sylow subgroup of G then, N(N(H)) = N(H). One way is clear, $N(N(H)) \supseteq N(H)$. To prove the reverse inclusion let $x \in N(N(H))$ then, $xN(H)x^{-1} = N(H)$. Further, note that H is the unique *p*-Sylow subgroup of N(H) because $nHn^{-1} = H$ for all $n \in N(H)$. We have $xHx^{-1} \subseteq xN(H)x^{-1} = N(H)$, i.e., xHx^{-1} is a *p*-Sylow subgroup of N(H) and hence $xHx^{-1} = H$.

- (5) q is a prime number and p divides q 1. Let C_q denote the cyclic group of order q. Then, $Aut(C_q)$ is a subgroup of S_q with the property that |Aut(G)| = q - 1. As $p \mid q - 1$, by Cauchy's theorem there exists $\phi \in$ $Aut(C_q)$ such that $o(\phi) = p$. Let $H \leq Aut(C_q)$ be the cyclic subgroup generated by ϕ . Then, we have a nontrivial homomorphism from C_p to $Aut(C_q)$ given by $\eta(a) = \phi^a$ for $a \in C_p$. Thus, the semidirect product $G = C_q \rtimes_\eta C_p$ is the required non abelian subgroup of order pq in S_q .
- (6) $N \leq G$ and H is a p-Sylow subgroup of G so, NH is a subgroup of G. Clearly, H is a subgroup of NH as well and we have $[NH : H] = [N : N \cap H]$ by the isomorphism $NH/H \cong N/N \cap H$. Further, we have [G : H] = [G : NH][NH : H]. Consequently, as H is p-Sylow subgroup $p \nmid [G : H]$ and hence $p \nmid [NH : H] = [N : N \cap H]$. This proves that $N \cap H$ is p-Sylow in N.